dark energy

1. Phenomenon: The Accelerating Universe

Observations of Type Ia supernovae (SNe Ia) show that the cosmic expansion is accelerating.
In a homogeneous and isotropic FLRW spacetime,

ds2=dt2+a2(t)[dr21kr2+r2dΩ2],ds^2 = -dt^2 + a^2(t)\left[\frac{dr^2}{1 - k r^2} + r^2 d\Omega^2\right],

the dynamics obey the Friedmann equations:

H2(a˙a)2=8πG3ρka2+Λ3,H^2 \equiv \left(\frac{\dot a}{a}\right)^2 = \frac{8\pi G}{3}\,\rho - \frac{k}{a^2} + \frac{\Lambda}{3}, a¨a=4πG3(ρ+3p)+Λ3.\frac{\ddot a}{a} = -\frac{4\pi G}{3}\,(\rho + 3p) + \frac{\Lambda}{3}.

Acceleration a¨>0\ddot a>0 requires ρ+3p<Λ/(4πG)\rho + 3p < \Lambda/(4\pi G) or, for a fluid with p=wρp = w\rho, an effective w<1/3w < -1/3.


2. Equation of State and Parameterizations

Define the dark-energy equation-of-state (EOS) parameter:

wpDEρDE.w \equiv \frac{p_{\rm DE}}{\rho_{\rm DE}}.
  • Cosmological constant: w=1w=-1, ρΛ=const\rho_\Lambda = \text{const}.
  • Quintessence (canonical scalar ϕ\phi): w(1,1)w \in (-1,1) and can vary with time.
  • Phantom: w<1w<-1 (violates NEC).
  • K-essence / Horndeski / beyond-Horndeski: generalized kinetic terms / modified gravity sectors.

A common phenomenological fit is CPL:

w(a)=w0+wa(1a)w(z)=w0+waz1+z.w(a) = w_0 + w_a (1-a) \quad \Longleftrightarrow \quad w(z) = w_0 + \frac{w_a z}{1+z}.

Then the DE density evolves as

ρDE(z)=ρDE,0(1+z)3(1+w0+wa)exp ⁣[3waz1+z].\rho_{\rm DE}(z) = \rho_{\rm DE,0} \,(1+z)^{3(1+w_0+w_a)}\,\exp\!\left[-\frac{3w_a z}{1+z}\right].

3. Background Observables

3.1 Hubble Expansion

For a flat universe (k=0k=0) with matter, radiation, and DE,

H2(z)H02=Ωr0(1+z)4+Ωm0(1+z)3+ΩDE,0ρDE(z)ρDE,0.\frac{H^2(z)}{H_0^2} = \Omega_{r0}(1+z)^4 + \Omega_{m0}(1+z)^3 + \Omega_{\rm DE,0}\, \frac{\rho_{\rm DE}(z)}{\rho_{\rm DE,0}} .

3.2 Distances (SNe Ia, BAO, CMB)

The comoving distance:

χ(z)=0zdzH(z).\chi(z) = \int_0^z \frac{dz'}{H(z')}.

Luminosity distance and distance modulus:

dL(z)=(1+z)χ(z),μ(z)=5log10 ⁣(dL(z)10pc).d_L(z) = (1+z)\,\chi(z), \qquad \mu(z) = 5\log_{10}\!\left(\frac{d_L(z)}{10\,{\rm pc}}\right).

BAO provide a standard ruler (sound horizon rdr_d) via angles and redshifts; a common isotropic proxy:

DV(z)[(1+z)2DA2(z)czH(z)]1/3,D_V(z) \equiv \left[ (1+z)^2 D_A^2(z)\,\frac{cz}{H(z)} \right]^{1/3},

with DA(z)=χ(z)/(1+z)D_A(z)=\chi(z)/(1+z).

CMB primarily constrains the distance to last scattering and early-time physics, helping to break degeneracies in late-time parameters.


4. Growth of Structure

In (sub-horizon, linear) Newtonian gauge and GR, matter perturbations δδρm/ρm\delta \equiv \delta\rho_m/\rho_m follow

δ¨+2Hδ˙4πGρmδ=0.\ddot\delta + 2H\dot\delta - 4\pi G \rho_m \delta = 0.

Define the growth rate fdlnD/dlnaf \equiv d\ln D/d\ln a where δD(a)\delta \propto D(a).
A useful fit in GR+Λ\LambdaCDM is fΩm(a)γf \simeq \Omega_m(a)^\gamma with γ0.55\gamma \approx 0.55.
Redshift-space distortions measure fσ8(z)f\sigma_8(z), testing the consistency of expansion vs growth (and modified gravity).

Modified gravity often appears as scale-/time-dependent effective couplings:

k2Ψ=4πGeff(k,a)a2ρmΔ,ηΦΨ1,k^2\Psi = -4\pi G_{\rm eff}(k,a)\,a^2 \rho_m \Delta, \qquad \eta \equiv \frac{\Phi}{\Psi} \neq 1,

where Φ,Ψ\Phi,\Psi are Bardeen potentials. Deviations from Geff=GG_{\rm eff}=G or η=1\eta=1 signal physics beyond GR/Λ\Lambda.


5. Microscopic Models (Sketch)

5.1 Cosmological Constant Λ\Lambda

Vacuum energy with w=1w=-1.
The old CC problem: naive QFT estimates overshoot the observed value by 1060120\sim 10^{60-120}.

5.2 Quintessence

Canonical scalar with Lagrangian

L=12(ϕ)2V(ϕ),ρϕ=12ϕ˙2+V,pϕ=12ϕ˙2V,\mathcal{L} = -\frac12 (\partial \phi)^2 - V(\phi), \quad \rho_\phi = \frac12 \dot\phi^2 + V, \quad p_\phi = \frac12 \dot\phi^2 - V,

so

wϕ=12ϕ˙2V12ϕ˙2+V.w_\phi = \frac{\frac12 \dot\phi^2 - V}{\frac12 \dot\phi^2 + V}.

Tracker / thawing potentials (e.g., VϕαV \propto \phi^{-\alpha}, Veλϕ/MPlV \propto e^{-\lambda \phi/M_{\rm Pl}}) can ease coincidence.

5.3 Modified Gravity (MG)

E.g., f(R)f(R) gravity with action S=d4xgMPl22f(R)+S = \int d^4x \sqrt{-g}\, \frac{M_{\rm Pl}^2}{2} f(R) + \dots
Equivalent to a scalar-tensor theory (extra scalar d.o.f.); screening mechanisms (chameleon, Vainshtein) recover GR locally.
Horndeski / DHOST give the most general second-order scalar-tensor actions; GW170817 constraints enforce cTcc_T \simeq c today, pruning parameter space.


6. Tensions and Consistency Checks

  • Hubble tension: early-time (CMB) inference of H0H_0 vs late-time (distance ladder) measurements disagree.
    DE dynamics or early dark energy are among proposed explanations, but a coherent fit with all data is nontrivial.

  • S8S_8 tension: weak-lensing–inferred S8σ8Ωm/0.3S_8 \equiv \sigma_8 \sqrt{\Omega_m/0.3} sometimes sits lower than Λ\LambdaCDM+CMB best-fits; could hint at modified growth or systematics.

A robust program is to test background (distances) and perturbations (growth, lensing) jointly.


7. Inference Pipeline (Practical Notes)

Given a parameter vector θ={Ωm0,Ωb0,H0,w0,wa,σ8,ns,}\theta = \{\Omega_{m0}, \Omega_{b0}, H_0, w_0, w_a, \sigma_8, n_s, \dots\}:

  1. Compute H(zθ)H(z|\theta) and distances {χ,DA,dL}\{\chi, D_A, d_L\}.
  2. Integrate linear growth D(aθ)D(a|\theta) or use fΩmγf \simeq \Omega_m^\gamma.
  3. Build likelihoods for SNe Ia (distance moduli), BAO (DAD_A, HH, DVD_V), CMB (distance to last scattering + priors), RSD (fσ8f\sigma_8), WL (S8S_8).
  4. Sample posteriors; test internal consistency (e.g., growth vs expansion).

8. Status

Data so far are largely consistent with Λ\LambdaCDM (w=1w=-1), but mild deviations remain allowed, and a few tensions persist.
Next-gen surveys (Euclid, Rubin/LSST, Roman, CMB-S4, DESI) will tighten w0,waw_0, w_a and stress-test GR via growth and lensing.

Key question: Is cosmic acceleration a new energy component or a sign that gravity itself changes on large scales?